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mass addition 

S U M M A R Y  
Eigenvalue problem methods, developed for boundary-layer flow are used to consider the spatial stability of the viscous 
now past a flat plate which has been separated by mass addition at the surface. A study is made of the rate of approach 
of a slightly disturbed initial profile to the interaction similarity solution found by Kassoy [1] and Klemp and Acrivos 
[2]. It is shown that eigenfunctions generated in the separated viscous layer (free shear layer) propagate into the in- 
viscid rotational layer adjacent to the wall. Thus by the inherent interaction process involved, these disturbances 
affect the external flow as well. The results indicate a relatively slow rate of decay when compared to an attached bounda- 
ry-layer flow on an impermeable surface. 

1. Introduction 

Recently Kassoy [-1] and Klemp and Acrivos [2] developed an interaction theory used to 
describe separated viscous flow past a flat plate with surface mass addition. A calculation was 
carried out in detail for the similarity injection distribution Vw(X, O) = C/(2 Re x) ~ where C 
is greater than the critical blowoff value Co = 0.87574..., found from boundary-layer theory 
[1]. Here (Re x)=-U'~ x'/v'~, the local Reynolds number defined in terms of the reference velocity, 
kinematic viscosity and the dimensional streamwise variable. The flow structure consists first 
of a wall layer of O (Re-4) in extent, composed of inviscid, rotational injectant fluid. Above this 
lies a viscous free shear layer of thickness O (Re-~). These two, relatively thin, internal layers act 
as an effective displacement body which disturbs ~the basically uniform inviscid, irrotational 
external flow to O (Re -~-). The resulting interaction; described by slender body theory, produces 
an O (Re-4) favorable pressure gradient which is essential (from the physical point of view) 
for injection rates measured by C > Co. 

In the present work eigenvalue procedures, described by Libby [3], Stewartson [4], Libby 
and Chen [5], Kemp [6] for boundary-layer flows, are adopted for a study of the spatial 
stability of the above interaction problem. Interest is focused on the spatial decay of an initial 
velocity profile (at a point xi) toward the similarity solution described in [-1] in the limit x---, oe. 

In the usual boundary-layer eigenvalue problem; one is concerned primarily with the nature 
of the eigenfunctions in the viscous layer alone. Presumably their influence on the displacement 
effect of the boundary layer could be calculated in terms of an O (Re- 5-) correction to the external 
flow. However, this does not appear to have been considered. In the present problem this 
displacement interaction effect is, of course, absolutely essential. The eigenfunctions here are 
generated in the free shear layer. As such they are the disturbances associated with the similarity 
form of the free shear layer, Lock's mixing layer solution [1]. Formal matching conditions be- 
tween the shear and wall layers can be used to show that the very same eigenfunction distur- 
bances must appear in the latter layer as well. This inviscid, rotational layer exhibits only the 
shear-layer induced eigenfunctions because it does not generate any of its own. The presence of 
these disturbances in the wall layer causes the basic shape of the effective displacement body 
to be altered to O (Re- ~-). Hence the disturbances alter the external uniform stream to O (Re-S). 

It may be observed then that the multilayer structure of the flow and the interaction nature of the 
problem lead to phenomena which are not observed in a boundary-layer calculation. 
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The eigenvalue computation for the free shear layer is of interest itself since the eigenvalues 
for Lock's mixing layer similarity solution have not been obtained previously. The numerical 
calculation involves an adaptation of the methods described by Libby and Chen [5] to a doubly 
infinite field. In addition large eigenvalues have been calculated analytically by means of asymp- 
totic techniques described by Kemp [6]. Here again, these procedures must be generalized due 
to the field size. 

2. Basic mathematical system 

The mathematical system which describes the problem can be written in the form 

L 

0 r ~ x  x -  0 ~ y - R e - ~ V 2  V2~ = 0  (la) 

0r (r--*oc)= 1 (lb) 

O,(x, 0 ) =  0, x > 0  (lc) 

O~(x, 0)= - C ( 2 x R e )  - } ,  x >0,  C > C  o = 0.87574... (ld) 

tpy(X i, y) = Re -~ fi,(y), 0 < ~ _-< Y* (x), x, > 0 (le) 

O , ( x , , y )  = - co  < < > 0 .  (10 

The variables ~, x and y in (1) are defined in terms of the uniform external flow U~o and a length 
scale L'. The Reynolds number Re is defined in the usual way. In (le, f) the nonsimilar 
initial profiles in the wall and shear layers are represented formally. Here ~,(y) and g~(z) 
represent "initial" values for the velocity profile at xi in the wall layer and shear layer respecti- 
vely. The variable y = y Re +, and y* (x) represents the outer edge of the injectant layer. The shear 
layer variable z = [y - Yo (x, Re)] Re }, where Yo (x, Re) represents the location of the zero stream- 
line. These initial profiles are to be considered as slightly perturbed from the relevant similarity 
solutions. It is to be determined whether these slightly altered profiles are able to relax to the 
appropriate similarity profiles in the limit of x ~ m .  

Unlike all previous calculations of this type of spatial stability where only the boundary-layer 
equations were considered, this problem requires a development in terms of the three distinct 
layers in this problem. Simply put, the disturbances in the shear layer alter the nature of the wall 
layer. And through the interaction coupling of the wall and external flows, a further disturbance 
to the latter appears. Hence we must develop slightly nonsimilar solutions in each of innermost 
layers and an appropriately altered solution in the external flow. 

3. Formulation 

The wall-layer transformations [1] 

Re ~ ~b = Fp = (2x) �89 f (x, t/), q = y (2x)- ~, p = pRe ~ (2) 

(x) = - (x) 

are substituted into (1) and the limit R e ~  oe applied. The lowest order system has the form 

f f~  + (�89 f 2 = , fl (x) + 2x (LLx  - f x f~ )  (3a) 

f,(x, 0 )=  o, f ( x , O ) = - c  x > x ,  (3b) 

L ( x , ,  7) = (3c) 

Here/~(x) is the initially unknown reduced interaction pressure gradient. The solution to (3) 
is sought in terms of perturbations from the asymptotically valid similarity solution described 
by Kassoy [1] or Klemp and Acrivos [2]. Hencefand/3  can be constructed in terms of expan- 
sions valid in the limit x ~  oe ; 
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J"+ i f (x, rl) = fo(q) + ~ fn( x, q), lim = 0 

fi(x) = rio + Z ft,(x), ' lim fi"+a - 0 
ti= tt X~O0 ~ n  

The lowest order terms in (4) are described by 

[ - /~  ) ] --i z _I 

r /= - (3 /30  ~ C/a ~ - 1  ~dG 
c 

]?o = (8/9(3�89 

fo (r/*) = - C O = - 0.87574... 

(4a) 

(4b) 

(Sa) 

(5b) 

(5c) 

Eq. (5c), which effectively defines q*, is derived from the matching condition between the wall 
and shear layers [1]. 

The corrections tOfo(r/),/~o in (4) will be shown to result from disturbance phenomena oc- 
curring in the shear layer. The system describing the latter can be developed by using the shear 
layer transformations 

Re ~ ~ = ~ = (2x)~ F (x, s), s = z (2x)- ~ = [y - Yo (x, Re)] (Re/2x) i ,  p = p Re ~ (6) 

in (1). It is found that in the limit Re--+ oo 

Fs~ + FF~, = 2x (F~ F,~ - F~ F~) (7a) 

F(x, s=0)  = 0 (7b) 

F,(x,, = (7c) 

The pressure term does not appear in (7a) because it is asymptotically small in the limit R e ~  ov 
with respect to the remaining viscous and inertia terms. 

The matching condition with the external flow implies that 

F~(x, s ~ ) =  1. (7d) 

Similarly the velocity match with the wall layer solution, ~ (x ,  z--*- m ) ~ R e - ~ y ( x ,  y~y*)  
where y* = (2x)~q *, indicates that 

Fs(x, s ~ - m) = 0.  (7e) 

Solutions for (7) valid in the limit x ~  m are described by 

F(x, s )=  Fo(s) + Z F,(x, s) lim F,+i = 0.  (8) 
t l = l  ~ X --~oo f n  

The lowest order solution, Fo (s), is simply Lock's free shear layer which is described by 

V;" (s) + Fo /V = 0 
Fo(0)=0 ,  

It follows that F o (s ~ - o~) = - C O + O (eC~ Hence streamfunction matching between the walt 
and shear layers leads to (5c). 

The quantity 7/* and (2) can be used to define a line, y* = R e  -+ (2x)~ r/*, representing the shape 
of the injectant region to a first approximation. Since the shear layer is relatively thinner 
[O (Re-i)] ,  this line also represents the shape of the effective displacement body for purposes 
of calculating corrections to the external flow. This can be developed formally by a higher order 
streamfunction matching between the shear layer and the external flow. To this end the latter 
can be written as 

O ~ y + R e - i O l ( x , y ) + . . .  
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where the correction streamfunction is described by V 2 ~//1 =0 ,  ~/l(r---+oo)= 0. The required 
matching condition is constructed from (6) and the definition 

yo(x, Re) ,-~ Re -~ [(2x)~q * + Z g,(x)] + 0 (Re =~) (9) 
n = l  

where lim (g,+~/g,)=0. In (9) the first approximation to the zero streamline location is 
x --+ oo 

identical to y* because the shear-layer is thin compared to O(Re-+). The functions gn(X) 
represent corrections to the leading similarity result due to the nonsimilar initial data. It 
follows that the matching condition i s  

~l(x,  O)-- - [-(2x)~q * + ~, gn(X)] . (10) 
n = l  

Hence the interaction pressure field can be calculated from the classical incompressible slender 
body formula 

1 0)d  
(11) 

4. Eigenvalue problem 

The first correction to F 0 (s) is described by the F 1 (x, s) system. This is derived by substituting 
(8) into (7)and gathering appropriate terms. Thus 

Fls,s + FoFI** + F[~' F ~ - 2x[Fo' F I = -  F;' FI~ ] = 0 (12a) 

V,s(X, s--+ oo) = F, (x, O) = Fl,(x, s--+ - oo) = 0.  (12b) 

Here primes refer to derivatives with respect to s. Eq. (12) describes the eigenvalue problem for 
Lock's free shear layer. The usual separation of variables procedure [3] indicates that 

Ca(x, s)= ~, a,(x/xi)- x"/Z N,(s) (13) 
n = l  

where the a, are Fourier constants which can be calculated in the usual manner. Here N. (s) is 
described by 

N;"+FoN~ '+2 ,F~N;+(1-2 , )F; 'N ,  -- 0 (14a) 

N~.(oo) = U,(0) = N,~(- oo) = O. (14b) 

Stewartson [4]  showed that F~ is an eigenfunction for all 2, and that there are two exact solu- 
tions. 

21 = 1 N, = F ; - F ~ ( 0 )  (15a) 

22 = 2 N 2 = F o- t /F6 . (15b) 

The transformations N,(s) = M,(s)F6, H.=M[,  can be used in (14) to produce a second order 
Sturm-Liouville system for H a [3]. The operator is self-adjoint. The eigenvalues are real and 
positive and the eigenfunctions orthogonal in ( -  0% oo) with respect to the weighting function 
(F64/F6 ') (see Appendix A). The positiveness of the eigenvalues is a measure of the spatial 
stability implied by F, ( x ~  0% s)--+0. Hence the Fourier coefficients are described by 

a n C2 1 , 4  t ,  t , = (Fo/Fo) (N,/Fo) [(F(xi, s)-Vo)/F'o]' ds 
- o o  

where the square of the norm, C,, is given by 

f+2  . . . . . .  (F;/F;)(No/F;) as  = C . .  
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4.1. The numerical solution for the eigenvalues 

The numerical procedure used to compute the eigenvalues of (14) is adopted from the quasi- 
linearization method of Libby and Chen [5]. However several alterations are required to 
accommodate the doubly infinite field. For numerical purposes the last boundary condition 
in (14b) is replaced by an analytical equivalent derived from (14a) for s ~ -  oo. Here F o is 
replaced by its asymptotic form, - C o + Q(~Cos). Then in the limit s ~  - 0% the equation has the 
form ,,,~T'"--~o,,,~ V " = ~ t  et)t Co~I. An integration and application of the last condition in (14b) 
produces the result 

lim EN;'~CoN;] (16) 

The first condition in (14b) is replaced by a formal statement of exponential decay. This is 
obtained by using the asymptotic form of Lock's solution, 

Fo(s--*oo ) ~ s - k  4- 7(s-k)  -2 exp [ - ( � 8 9  k) 2] 

k=0.3739, 7=0.198 

in (14a). It follows that 

t r l  t t  t ~ N;, + (s-k)Ns +2,N~ - 7Nn(oO)(2,- 1) exp[ - ( � 8 9  k) 2] (17) 

for s~oo.  The asymptotic form of F o can be used to show that this result is valid for s >  4. 
An integration and application of the first condition in (14b) provides a relation between N; 
and Ns in the limit s ~  oo 

lim {N~' - - ( s -  k)(1 + (1 - 2 , ) ( s -  k)- 2)N~ + (1 - 2,)yN,(oo)(s- k) - i  exp [-- (�89 k) 2] }. 
s-~ ~ (18) 

The asymptotic expressions used to produce (18) can be used to show that the result is accurate 
for s ~ s* where s* is sufficiently large so that [(1 - 2,)/(s* - k)2[ ~ 1. Finally all the eigenfunctions 
except that corresponding to 2 = 2  are normalized by N~(0)= 1. In the exceptional case (see 
(15b)), the normalization N~'(O)= 1 is used. 

The numerical procedure now parallels Libby and Chen (1968). Eqs. (14a) and (17) are 
expressed in quasilinear form with 2, and N , ( ~ )  considered as parameters. The former is 
integrated to s = 4 with an assumed 2. and N~' (0). Following this, (17) is integrated backwards 
from s* (which can be selected from the above inequality once 2, is chosen) to s=4 ,  with (18) 
as a boundary condition at s*, and an assumed N,(~)  = N,(4). Continuity of N., N~, N~' at 
s = 4  provides three conditions for the unknown 2,, N,(~) ,  Nj(0) and the constant associated 
with integration of (18). The fourth condition is found by integrating (14a) to s = - 10 where 
(16) is applied. 

The procedure was tested for accuracy by comparing the numerical results for the two smallest 
eigenvalues with the analytical forms in (15). The differences were of O (10-3). The next three 
eigenvalues were found to be 

23=3.2743,  24=4.6957, 2s=6.209 (19) 

Larger eigenvalues can, in principle, be computed. However the doubly infinite field and in 
particular the growth of s* with 2, implies increasingly large computation time. 

4.2. Asymptotic estimates of large eigenvalues 

Larger eigenvalues can be estimated by constructing an asymptotic theory based on the 
method described by Kemp [6]. In the present work some variation from Kemp's procedures 
are required in order to deal with the doubly infinite field of the mixing layer. The describing 
equation can be found by substituting the transformations 

Journal of Engineerin 9 Math., Vol. 8 (1974) 229-240 



234 .A. Zebib ,  D. R.  K a s s o y  

f f �9 t =  (F~)~ds, v ( t )=F 'o �88189  Fods] (N/F 'o ) '  
�9 0 0 

(20a, b) 

into (14a). It follows that  

V"(t) + = o 
where 

7 F~ '2 
# = 2 - - ( ) ,  q(t)  -- 16 F~ 3 

(2t) 

Fg 5f; '  VoF;' 
+ (22) 

4F~ 4 Fa 2 2F~ 2 

It should be noted that  the subscript n for 2 and v have been dropped for convenience. The 
boundary  condit ions for (21), analogous to those in (14b) must  be developed next. To this 
end we consider first the asymptotic  behavior of N' (S) for s--* _+ oo. If the asymptotic  formulas 
for the F o (s) function 

V o ( s ~ o o  ) ,,~ s - k + y ( s - k )  -2  exp [ - ( � 8 9  2] + . . . ,  (23a) 

F o ( s - - . - o o )  ~ - C o  +aeC~ + . . . ,  k=0.3739, y=0.198, a=1.1502 (23b) 

are substituted into (14a), and the resulting equations are solved for N'  (s--* oo) and N ( s ~  - oo), 
then it follows that  

N'  (s ~ oo) ,,, A + (s - k) (x-l) exp [ - (�89 (s - k) 2] + . . .  (24a) 

N' ( s -+  - oo) ,,, A -  + (B/Co)  e C~  (24b) 

where A +, A -  and B are integration constants. 
One can combine (20a) and (23a) to show that  for s--+ oo 

t - A ~ s - k ,  A = I ~  ( ( F o ' ) ~ - l ) d s + k .  (25a) 

A similar manipulat ion with (20b) and (23b) implies that  for s ~ -  oo 

f; t + 5 ~ 2(a/Co)~ e (c~ 5 = - (F[~)~ ds . (25b) 

The asymptotic  behavior of v(t)  can now be obtained from (20b, 23, 24, 25). We find 

v (t ~ oo) ~ (t - A) (u- ~) exp [ - (�88 (t - A)2] (26a) 

v (t ~ - 6) --~ (t + 6) ~ + O ([-t + 6] ~) (26b) 

corresponding to s ~  _ oo respectively. 
Finally, conditions at the zero streamline, s = 0, must  be considered. Here 

Fo(s--*O) ~ ~1 s +  (~z/2)s27 - (~1c~2/24)s'-(c~/120)s 5 + . . .  (27) 

where ~1 = F~ (0) = 0.58727012, c~ 2 = F~' (0) = 0,28242854. Following procedures analogous to 
those outlined above, it is found that  for s ~ 0  

s ~ e ; ~ t - -  (~z/4~2)t  z + O(t 3) (28) 

v(t = 0) = ~ N ' ( O ) .  (29) 

A solution for v (t; p) in (21), subject to (26) and (29), is sought in the limit #---, oo. In particular, 
an explicit expression for the reduced eigenvalue/z = 2 -  �89 is to be obtained. 

When t>> 1, it can be shown from (22, 23a, 25a) that  q ( t ~ o o ) ~ ( t - A ) Z / 4  so that  (21) has 
the form 

v" (t) + [~ r- ((t - A)2/4)] v = 0 .  (30) 

This equation has a turning point at t-=---t o = 2# 6 + A so that  a W K B  procedure is necessary. 
Following Kemp then it is observed that  for t > t o, the solution consists of exponentially in- 
creasing and decreasing functions. The latter has the asymptotic  form given in (26a). The former 
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is annihilated by the appropriate "matching" at t = t o of the t > to solution with the t < to 
solution. The latter is found to have the final form 

v(t>> l )=(D/#  ~) 1 4/~ / cos(x--0),  t < t  o 

�9 t - A  
Z:/Z [ s l n ( ~ ) - ( n / 2 , +  ~ (1 (t-A,2]-~]ap / J (31, 

0 = (3n/4) + ln, l= O, +_ 1, +_ 2, ... 

Here the 0 form arises from the required annihilation of the exponentially large terms in the 
t > t o solution [7]. The quantity D is an integration constant. If/z is thought of as a large pa- 
rameter, then (31) is a solution which is formally valid for t = O (#~) = O (2~). When t = o (#�89 
the asymptotic form of (31) is 

cos - 5 -1) (32) 

When t ~  1, it can be shown from (22, 27) and (28) that q ~ b l + b 2 t + O ( t  2) where b l =  
- 7 ~ / 1 6 e ~ ,  b 2 = -[(3e2)/(44~) ] [ 1 -  (7~z2/4c~3)]. Thus (21) has the special form 

v" + (~+b~ + b2t)v = 0.  (33) 

A general solution, in terms of Airy functions is 

v(t) = C 1 A , ( - b ~ [ # + b  I -k b2 tl)q- C2Bi(-b~2[#-bbl + b2 t]) (34) 

where C~, z are integration constants. Since J p + b~ + b 2 tJ ~ 1, (34) can be rewritten in terms of 
the asymptotic expressions for A i ( - x ) ,  B i ( - x ) ,  x -> 1 [8]. It follows that 

v--(E~# +) I c o s ( ~ + p ~  I t +  b ~ ] +  ( ~ / 4 ) + F + O ( p - ~ ) ) + O ( p - ~ ) I  (35) 

where E and F are integration constants. A comparison of (32) and (35) can be used to show that 

F _  2#~ ( b l  ) ~ 
3 b 2 (7z/2)# - ~ + A # ~ - r t ( l + l )  (36) 

when t ~  - 6 it can be shown from (22), (23b) and (25b) that q ~ - 1/[4(t + 6) 2] where fi is defined 
in (25b). Then (21) has the form 

v"+ (#+ [4(t + c5)21- a)v -= 0. (37) 

The solution of (37) which satisfies the boundary condition in (26b) is 

v (t) (t + So It + 41) (38) 

in which G is an integration constant and Jo is the Bessel function. For [p~ [t + 61[ ~> 1 the 
latter can be written in an asymptotic form. It follows that 

v (t) = (Gift �88 [cos (p�89 [t + 61 - (7z/4) + O (#- ~)1. 

If this is matched with (35), one finds that 

F = 2 / ~  #~ b~ 
3 b 2 b2 + #~-6-(zc/2) (39) 

A quadratic equation fo r /~  can be found by equating (36) and (39); 

/~ + (2/7t) (A + 6)#~- + 21 + 1 = 0 .  (40) 

An explicit expression for/z ~ can be found from (40). In order to insure real positive values of 2 
(see (22)), it must be asserted that l=  - n, n = 1, 21 3, .... This is in agreement with the definition 
of 1 in (31). Then it follows that 
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2, = 2n - �89 + (co2/2) - co (2n - 1 + (o92/4))~ + O (n- ~) (41) 

co = + a ) .  

Numerical evaluation of the formulas in (25) show that A =0.173, 6=2.09. The asymptotic 
values of 2, for the first five eigenvalues are compared with the numerically obtained values 
in Table 1. The agreement is favorable. 

TABLE 1 

n ~exaet ~'asymp. 

1 1 .7624 
2 2 1.8358 
3 3.2743 3.1541 
4 4.6957 4.5884 
5 6.209 6.0942 

5. Wall-layer corrections 

The form of the first wall-layer correction can be ascertained from the streamfunction matching 
condition, f (x, 7 ~ 7 " ) ~  F(x, s--,- oo). This has the explicit form 

f(x, 7*)+f'(x, 7" ) ( r / - 7 " )+ . . .  ~Co + ~ a,x-a"/2N,(-oo). (42) 
n = l  

Here ( t / -  7*) can be expressed in terms of Yo (x; Re) by combining the transformations in (2) 
and (6), the definition of Yo (x; Re) in (9). It follows that 

7 -  7" = (2x)- Z g.(x) + 0 (Re- +) (43) 
n = l  

where 91 (x)= o(x~). Then if (4a), the value f o ( 7 * ) = -  C O and (43)are substituted into (42), 
it follows that 

fa (x, 7*)+f~(,*)(2x)-~91 (x) = ~ anx-a"/ZNn(- o(3). (44) 
n = l  

Eq. (44)implies that the expansions forf~ (x, 7)and gl (x)have the form 

A = ~ c~,x-X"/ZG.(7) (45a) 
n = l  

gl = ~ 6.(2x) ~x-z"/z (45b) 
n = l  

where c~,, 6, are constants to be found. The matching condition for G.(7) can then be extracted 
from (44) and (45) 

~, G, (7") = a, AT, ( - oo) - f~  (t/*) 6 , .  (46) 

The dividing streamline equation, (9), can now be written as 

Since (47) represents the shape of the effective displacement body, it follows from interaction 
- i  - ! ! t !  , considerations that the pressure field p = Re 3 p is proportional to Yo (x; Re) or p ~ Yo (x, Re). 

Thus (4b) can be written as 
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/ 7 ( x ) = t l o  + - "i2 

.=t  (48) 
�9 where 7. remains to be determined. 

The systems describing the G. functions are derived from (3), (4), (45a) and (48). It follows 
that for n > 1 

fo G~' + f ;  ((2/3) + 2.) G'. + f•' (1 - 2.) G. = - 7./c~. (49) 

c . ( 0 )  = G;(0)  = 0 .  

An analytical solution for (49) is possible because one exact closed form homogeneous solution, 
fd, exists. Hence the full solution has the form 

G. = (7./~.)H.(~, 2.) (50) 

where 

H.(~/; 4 . )=  - ([4l(t)C~e(tl)-(ol(~)C~e(t)]/fo(t) W(t))dt 
0 

~bl(t ) = f ; ( t ) ,  

, ~ /2flo_2.fd2(a)'\d 4b2(t)=f~ t ~ ~  } a}ds 

w (t) = r  (t) 4,1( t) - i ( t) 4,2 (t) . 

It is noted that since o~.G,,=7,,Hn(tl, 2.), then 

f t  = ~ 7.H.(rl, 2.) x-~"/2. (51) 
n = l  

Hence the'expansion constants in (48) and (51) are the same. Furthermore from (46) and (50) 
we obtain 

7.H.(t/*, 4.) = a . m . ( -  oo)-fd(rl*)6. (52) 

Since H.(t/*, 2.), N . ( - o o ) a n d  fd(rl*)are known, and the a. are Fourier coefficients which 
depend on the initial profile, then (52) provides one relation for the two unknowns 7. and 6.. 
A second relation follows f rom an explicit calculation of the pressure interaction with the 
external field. Eqs. (10), (11), and (45b) can be combined to produce an expression for the 
corrections to the similarity pressure distribution 

_ (3flo/2)(2x) -~ 2-~ oo - ,5. d~ 

#. = (X./2) + (�89 (53) 

The integral in (53) can be evaluated by dividing the interval into the ranges x i < ~ < x -  5, 
x + e < ~ < ~ a n d  rewriting the integrands in the appropriate uniformly convergent series 
form. Then for the limit e~0,  x ~  (53) becomes 

~-(3f lo /2) (2x)-~= 2-~ ~, [ ( 1 - # . ) ( 2 # . - 1 ) 6 .  ~, ( m + l - # . ) - l ( m + # . ) - l ] x  T M  (54) 
7~ n = l  m=O 

Then it follows from the definition of fi (x) in (2), and (4b), (48) and the derivative of (54) that 

7. = (4/7z)#.(1-#.)(2#.-  1)b n ~ [ (m+ 1-- #n) (m + #n)-] -1 (55) 
m = 0  

The infinite series in (55) has strong convergence properties. As m--> oo the terms approach m- z. 
Thus from (52) and (55) explicit numerical values of 7., 6. can be found. 
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6. Summary and conclusions 

(56a) 

The wall and shear-layer solutions can now be written as 

( 2 x ) - ~  =f(x,  tl) =fo(t/) + ~ y,H,(tl)x -a"/z 
n = l  

(56c) 

(2x)-}~ = F(x, s) = Fo(s ) + ~', a,N,(s)x - ~"/2 (56b) 
n = l  

Y~ + ,=1 ~ &"x-~"/21 

.2  

Here 7,, &, are known functions of the Fourier coefficients a,. Thus with given initial data at xi 
in the shear layer (see 10 each of the coefficients can be calculated. Then 7,, f ,  can be explicitly 
evaluated from (52) and (55). It is to be noted that the coefficients in the wall-layer expansions 
are essentially prescribed by the shear-layer eigenfunction behavior. Hence the initial value of 
the velocity profile in the wall-layer (see le) can, in a sense, be calculated from (56a). This is 
interpreted to mean that the wall-layer initial data must be compatible with that in the shear 
layer. This is not surprising because the development of the two layer upstream of xi is inter- 
related by the interaction process. 
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Figure 1. Eigenvalues versus injection parameter  C. The origin for 2,, (3, 4, 6) corresponds to n = 3, 4, 5 respectively. 
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The results in (56) show that the eigenfunctions generated in the shear layer cause disturbances 
in the wall layer and external flow through the mechanism of the interaction phenomena. The 
asymptotic rate of decay of the initial profiles to the equilibrium similarity solutions is like 
(x) -~ for x ~ 0  because the smallest eigenvalue 20 = 1. This may be compared with the classical 
result for flat plate boundary-layer flow [9] where the decay rate is O(x-1 )  corresponding to 
2 o = 2. Evidently free shear layers are less spatially-stable than boundary layers of a related 
type. 

Krishnamurthy and Williams [10] have considered the boundary-layer eigenvalue problem 
arising from a linearization about the injected Blasius profile [11] for values of the wall blowing 
parameter - f  (0) = C < C o. They computed numerical values for the first several eigenvalues as 
a function of C. In Fig. 1 these results are shown for n -- 3, 4, 5. The largest injection rate considered 
by Krishnamurthy and Williams is C = 0.81317. The values at C = 0.87574 . . . .  C O are those found 
in Section 3 of the present work. They represent the natural extension of the boundary-layer 
results to the critical blowoff configuration. Of course larger values of injection cannot be 
considered within the framework of boundary-layer theory. However, the present theory shows 
that for a flat plate with a wall injection rate larger than Co, the eigenvalues are those of the 
free-shear layer. Hence beyond C-- Co the eigenvalues remain constant. 

A p p e n d i x  A 

Sturm-Liouvil le system 

The transformation H , =  (N,/F[~)' applied to (14a) leads to 

(F;3 u r; 
- -  - Foe;  H ,  = - 2. - -  H .  (A1) L(H.)_-__ Fo' 'V; 

The boundary conditions on H,(s) are 

H,(s--* oo) ~ ( s -  k) x-1 exp [ - (�89 k) 2] (A2) 

H.(O) = N'  (O)/c~ , (A3) 

H,(s-- .  -- oo) ~ A , e  -cos, A, = constant (A4) 

where use has been made of (23) and (24). In order to show that L ( H , ) i s  a self adjoint operator, 
let H,, Hm be two solutions of (A1) satisfying A(2-4). Then 

t [ H . L ( H m ) - H m L ( H . ) ] d s =  FF'3L~8' )jR, �9 +~o lim | ~ , . ( U . U m - H m H "  
- -  oO R 1 - - * o o , R 2 - - *  - oo R 2  

a 3 C~ e 3C~ 

=R~lim-~ aC~eCO ~ [ A , , A , , , C o - A . A ~ C o ] e  - 2co~ 

= 0  (A5) 

where use has been made of (A4) and (23b). It follows immediately that the eigenvalues are real 
and that the eigenfunctions are orthogonal on ( -  o% oo) with respect to the weight function 
(F[~)4/FD '. 

With regard to the positiveness of the eigenvalues, use of (A1) and (A5) leads to 

t 4  t t  2 2. (F ( j /V ; )H .  ds = ~ ~,2t42 ,3 ,, ,2 �9 o" o "*. ds + (F[~/F~))H. ds ( A 6 )  
s 1  1 

where s 1 > 0  is such that H(s l )  = 0. That there is such an s I is a result of the trigonometric 
nature of solution (31) and definition (20b) of v(t). Now all integrals appearing in (A6) are 
positive which leads to 2, > 0. 
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